Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 43, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500201

RESUMO

Intracerebral aneurysms (IAs) are pathological dilatations of cerebral arteries whose rupture leads to subarachnoid hemorrhage, a significant cause of disability and death. Inflammation is recognized as a critical contributor to the formation, growth, and rupture of IAs; however, its precise actors have not yet been fully elucidated. Here, we report CNS-associated macrophages (CAMs), also known as border-associated macrophages, as one of the key players in IA pathogenesis, acting as critical mediators of inflammatory processes related to IA ruptures. Using a new mouse model of middle cerebral artery (MCA) aneurysms we show that CAMs accumulate in the IA walls. This finding was confirmed in a human MCA aneurysm obtained after surgical clipping, together with other pathological characteristics found in the experimental model including morphological changes and inflammatory cell infiltration. In addition, in vivo longitudinal molecular MRI studies revealed vascular inflammation strongly associated with the aneurysm area, i.e., high expression of VCAM-1 and P-selectin adhesion molecules, which precedes and predicts the bleeding extent in the case of IA rupture. Specific CAM depletion by intracerebroventricular injection of clodronate liposomes prior to IA induction reduced IA formation and rupture rate. Moreover, the absence of CAMs ameliorated the outcome severity of IA ruptures resulting in smaller hemorrhages, accompanied by reduced neutrophil infiltration. Our data shed light on the unexplored role of CAMs as main actors orchestrating the progression of IAs towards a rupture-prone state.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Camundongos , Animais , Humanos , Aneurisma Intracraniano/etiologia , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , Inflamação/patologia , Sistema Nervoso Central/metabolismo , Fatores de Risco , Macrófagos/metabolismo , Aneurisma Roto/complicações , Aneurisma Roto/metabolismo , Aneurisma Roto/patologia
2.
CNS Neurosci Ther ; 30(2): e14603, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332649

RESUMO

INTRODUCTION: Genetic factors play a major part in mediating intracranial aneurysm (IA) rupture. However, research on the role of transcription factors (TFs) in IA rupture is rare. AIMS: Bioinformatics analysis was performed to explore the TFs and related functional pathways involved in IA rupture. RESULTS: A total of 63 differentially expressed transcription factors (DETFs) were obtained. Significantly enriched biological processes of these DETFs were related to regulation of myeloid leukocyte differentiation. The top 10 DETFs were screened based on the MCC algorithm from the protein-protein interaction network. After screening and validation, it was finally determined that CEBPB may be the hub gene for aneurysm rupture. The GSEA results of CEBPB were mainly associated with the inflammatory response, which was also verified by the experimental model of cellular inflammation in vitro. CONCLUSION: The inflammatory and immune response may be closely associated with aneurysm rupture. CEBPB may be the hub gene for aneurysm rupture and may have diagnostic value. Therefore, CEBPB may serve as the diagnostic signature for RIAs and a potential target for intervention.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Regulação da Expressão Gênica , Aneurisma Roto/genética , Aneurisma Roto/metabolismo , Imunidade , Fatores de Transcrição/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
3.
Gene ; 908: 148253, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38341004

RESUMO

OBJECTIVE: This study endeavored to explore the relationship between exosome-derived lncRNA Double Homeobox A Pseudogene 8 (DUXAP8) and Chondroitin Polymerizing Factor 2 (CHPF2), and their roles in the pathogenesis of intracranial aneurysm (IA). METHODS: The shared targeted molecules (DUXAP8 and CHPF2) were detected via GSE122897 and GSE75436 datasets. A total of 312 patients with IAs were incorporated into this study. Exosomes were isolated from serum samples, and their identity was confirmed using Western blotting for exosomal markers (CD9, CD63 and ALIX). Inflammatory responses in IA tissues were evaluated using Hematoxylin-Eosin staining. CHPF2 protein concentration and the expression levels of DUXAP8 and CHPF2 mRNA in exosomal samples were assessed using Immunochemistry (IHC), Western Blotting, and qRT-PCR, respectively. Cell-based assays involving Human Umbilical Vein Endothelial Cells (HuvECs), including transfection with exosomal DUXAP8, Western Blotting, qRT-PCR, and Cell Counting Kit-8, were conducted. Receiver Operating Characteristic (ROC) curves were derived using SPSS. RESULTS: DUXAP8 level affects the level of CHPF2. DUXAP8 expression within exosomes was associated with increased CD9, CD63, ALIX and CHPF2 levels during IA development and inflammatory stress. In HuvECs, transfection with exosomes carrying DUXAP8 siRNA resulted in reduced CHPF2 expression, whereas DUXAP8 mimic increased CHPF2 concentrations. The Area Under the ROC Curve (AUC) for exosomal DUXAP8 expression and CHPF2 levels, and aneurysm size was 0.768 (95% CI, 0.613 to 0.924), 0.937 (95% CI, 0.853 to 1.000), and 0.943 (95% CI, 0.860, 1.000), respectively. CONCLUSION: Exosome-derived DUXAP8 promotes IA progression by affecting CHPF2 expression.


Assuntos
Exossomos , Aneurisma Intracraniano , N-Acetilgalactosaminiltransferases , RNA Longo não Codificante , Humanos , Exossomos/genética , Exossomos/metabolismo , Genes Homeobox , Células Endoteliais da Veia Umbilical Humana/metabolismo , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , MicroRNAs/metabolismo , Pseudogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo
4.
Sci Rep ; 14(1): 3941, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366068

RESUMO

The significant role of increased activation of 20S proteasomes in the development of abdominal aortic aneurysms has been well-established in a mouse model. The available literature lacks similar studies concerning brain aneurysms. The aim of the study was to verify the hypothesis that patients with unruptured intracranial aneurysms (UIA) have increased 20S proteasome ChT-L activity compared to the control group of individuals without vascular lesions in the brain. In the next step, the relationship between the activity of 20S proteasomes ChT-L and precursor proteins from the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) family, namely NF-κB1 (p105), NF-κB2 (p100), NF-κB p65, and the inflammatory chemokine MCP-1, was examined. Patients with UIA had significantly higher 20S ChT-L proteasome activity compared to the control group. Patients with multiple aneurysms had significantly higher 20S proteasome ChT-L activity compared to those with single aneurysms. In patients with UIA, the activity of the 20S proteasome ChT-L negatively correlated with the concentration of NF-κB1 (p105) and NF-κB p65 precursor proteins and positively correlated with the concentration of the cerebrospinal fluid chemokine MCP-1. Our results may suggest that increased 20S proteasome ChT-L activity in UIA patients modulates inflammation in the cerebral arterial vessel via the MCP-1 chemokine as a result of activation of the canonical NF-κB pathway.


Assuntos
Aneurisma Intracraniano , NF-kappa B , Camundongos , Animais , Humanos , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Aneurisma Intracraniano/metabolismo , Proteólise , Subunidade p52 de NF-kappa B/metabolismo
5.
Sci Rep ; 14(1): 559, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177414

RESUMO

miR-374a-5p expression and localization in intracranial aneurysm (IA) tissues were detected, and its correlation with vascular smooth muscle cells (VSMCs) and macrophage markers was analyzed. Using platelet-derived growth factor-BB (PDGF-BB) induced VSMC model, elastase-induced IA rat model. Subsequently, miR-374a-5p was knocked down or overexpressed. We investigated the effects of miR-374a-5p on phenotypic conversion, and in vivo experiments were also carried out to verify the findings. The targeted relationship between miR-374a-5p and WNTA5 was analyzed. The effect of WNT5A inhibition on VSMC phenotypic transformation and THP-1-derived macrophage polarization was explored. Clinical studies have shown that miR-374a-5p was upregulated in IA patients. miR-374a-5p was negatively correlated with SM22α, α-SMA, CD206, and positively correlated with CD86. In vitro experiments showed that knocking down miR-374a-5p reversed the promotion of SM22α and α-SMA expression by PDGF-BB, while overexpression of miR-374a-5p had the opposite effect. In addition, knocking down miR-374a-5p also reversed the decrease in Calponin, TIMP3, TIMP4, and IL-10 levels caused by PDGF-BB, and further reduced the levels of MMP1, MMP3, MMP9, IL-1ß, IL-6, and TNF-α. These findings were further validated in vivo. In IA rats, there were notable increases in both systolic and diastolic blood pressure, along with an elevated M1/M2 ratio and the occurrence of vascular lesions. However, these symptoms were improved after knocking down miR-374a-5p. Furthermore, miR-374a-5p could target the WNT signals (WNT2B, WNT3, and WNT5A). miR-374a-5p regulated the VSMC phenotypic conversion and M1 macrophage polarization by targeting WNT5A, thereby impacting the progression of IA.


Assuntos
Aneurisma Intracraniano , MicroRNAs , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Becaplermina/metabolismo , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proliferação de Células/fisiologia
6.
Microvasc Res ; 152: 104643, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38081409

RESUMO

OBJECTIVE: This research was dedicated to investigating the impact of the SNHG12/microRNA (miR)-15b-5p/MYLK axis on the modulation of vascular smooth muscle cell (VSMC) phenotype and the formation of intracranial aneurysm (IA). METHODS: SNHG12, miR-15b-5p and MYLK expression in IA tissue samples from IA patients were tested by RT-qPCR and western blot. Human aortic vascular smooth muscle cells (VSMCs) were cultivated with H2O2 to mimic IA-like conditions in vitro, and the cell proliferation and apoptosis were measured by MTT assay and Annexin V/PI staining. IA mouse models were established by induction with systemic hypertension combined with elastase injection. The blood pressure in the tail artery of mice in each group was assessed and the pathological changes in arterial tissues were observed by HE staining and TUNEL staining. The expression of TNF-α and IL-1ß, MCP-1, iNOS, caspase-3, and caspase-9 in the arterial tissues were tested by RT-qPCR and ELISA. The relationship among SNHG12, miR-15b-5p and MYLK was verified by bioinformatics, RIP, RNA pull-down, and luciferase reporter assays. RESULTS: The expression levels of MYLK and SNHG12 were down-regulated and that of miR-15b-5p was up-regulated in IA tissues and H2O2-treated human aortic VSMCs. Overexpressed MYLK or SNHG12 mitigated the decrease in proliferation and increase in apoptosis of VSMCs caused by H2O2 induction, and overexpression of miR-15b-5p exacerbated the decrease in proliferation and increase in apoptosis of VSMCs caused by H2O2 induction. Overexpression of miR-15b-5p reversed the H2O2-treated VSMC phenotypic changes caused by SNHG12 up-regulation, and overexpression of MYLK reversed the H2O2-treated VSMC phenotypic changes caused by up-regulation of miR-15b-5p. Overexpression of SNHG12 reduced blood pressure and ameliorated arterial histopathological damage and VSMC apoptosis in IA mice. The mechanical analysis uncovered that SNHG12 acted as an endogenous RNA that competed with miR-15b-5p, thus modulating the suppression of its endogenous target, MYLK. CONCLUSION: Decreased expression of SNHG12 in IA may contribute to the increasing VSMC apoptosis via increasing miR-15b-5p expression and subsequently decreasing MYLK expression. These findings provide potential new strategies for the clinical treatment of IA.


Assuntos
Aneurisma Intracraniano , MicroRNAs , Animais , Humanos , Camundongos , Apoptose , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Peróxido de Hidrogênio/metabolismo , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina , Fenótipo , RNA não Traduzido/genética
7.
J Proteomics ; 293: 105060, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38154549

RESUMO

Currently, there are no effective methods for predicting the rupture of asymptomatic small intracranial aneurysms (IA) (<7 mm). In this study the aim was to identify early warning biomarkers in peripheral plasma for predicting IA rupture. Four experimental groups were included: ruptured intracranial aneurysm (RIA), unruptured intracranial aneurysm (UIA), traumatic subarachnoid hemorrhage control (tSAHC), and healthy control (HC) groups. Plasma proteomics of these four groups were detected using iTRAQ combined LC-MS/MS. Differentially expressed proteins (DEPs) were identified in RIA, UIA, tSAHC compared with HC. Target proteins associated with aneurysm rupture were obtained by comparing the DEPs of the RIA and UIA groups after filtering out the DEPs of the tSAHC group. The plasma concentrations of target proteins were validated using enzyme-linked immunosorbent assay (ELISA). The iTRAQ analysis showed a significant increase in plasma GPC1 concentration in the RIA group compared to the UIA group, which was further validated among the IA patients. Logistic regression analysis identified GPC1 as an independent risk factor for predicting aneurysm rupture. The ROC curve indicated that the GPC1 plasma cut-off value for predicting aneurysms rupture was 4.99 ng/ml. GPC1 may be an early warning biomarker for predicting the rupture of small intracranial aneurysms. SIGNIFICANCE: The current management approach for asymptomatic small intracranial aneurysms (<7 mm) is limited to conservative observation and surgical intervention. However, the decision-making process regarding these options poses a dilemma due to weighing their respective advantages and disadvantages. Currently, there is a lack of effective diagnostic methods to predict the rupture of small aneurysms. Therefore, our aim is to identify early warning biomarkers in peripheral plasma that can serve as quantitative detection markers for predicting intracranial aneurysm rupture. In this study, four experimental populations were established: small ruptured intracranial aneurysm (sRIA) group, small unruptured intracranial aneurysm (sUIA) group, traumatic subarachnoid hemorrhage control (tSAHC) group, and healthy control (HC) group. The tSAH group was the control group of spontaneous subarachnoid hemorrhage caused by ruptured aneurysm. Compared with patients with UIA, aneurysm tissue and plasma GPC1 in patients with RIA is significantly higher, and GPC1 may be an early warning biomarker for predicting the rupture of intracranial small aneurysms.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Hemorragia Subaracnoídea Traumática , Humanos , Aneurisma Roto/diagnóstico , Aneurisma Roto/etiologia , Biomarcadores , Cromatografia Líquida , Glipicanas , Aneurisma Intracraniano/diagnóstico , Aneurisma Intracraniano/metabolismo , Fatores de Risco , Hemorragia Subaracnoídea Traumática/complicações , Espectrometria de Massas em Tandem
8.
Vascul Pharmacol ; 153: 107236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774964

RESUMO

Intracranial aneurysms (IAs) are characterized by abnormal dilatation of the cerebral vessels. Vascular smooth muscle cells (VSMCs) are implicated in maintaining vascular homeostasis. Disordered VSMCs are one of the most common causes for occurrence and development of IAs. The bone morphogenetic protein 4 (BMP4) signalling pathway is involved in regulating cell proliferation, apoptosis, and differentiation. This study aimed to investigate the effects of BMP4 on VSMCs and its underlying mechanisms. BMP4 was upregulated in the VSMCs of IAs and caused apoptosis of VSMCs through Smad1/5 phosphorylation. In addition, BMP4 overexpression significantly promoted the proliferation and migration of VSMCs and induced a phenotypic transformation from contractile to inflammatory. Our findings facilitate further understanding of the occurrence and development of IAs and provide a potential therapeutic target.


Assuntos
Aneurisma Intracraniano , Músculo Liso Vascular , Humanos , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Músculo Liso Vascular/metabolismo , Aneurisma Intracraniano/metabolismo , Transdução de Sinais , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
9.
Redox Biol ; 67: 102887, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717465

RESUMO

Reactive Oxygen Species (ROS) are widely accepted as a pernicious factor in the progression of intracranial aneurysm (IA), which is eminently related to cell apoptosis and extracellular matrix degradation, but the mechanism remains to be elucidated. Recent evidence has identified that enhancement of Cyclophilin D (CypD) under stress conditions plays a critical role in ROS output, thus accelerating vascular destruction. However, no study has confirmed whether cypD is a detrimental mediator of cell apoptosis and extracellular matrix degradation in the setting of IA development. Our data indicated that endogenous cypD mRNA was significantly upregulated in human IA lesions and mouse IA wall, accompanied by higher level of ROS, MMPs and cell apoptosis. CypD-/- remarkably reversed vascular smooth muscle cells (VSMCs) apoptosis and elastic fiber degradation, and significantly decreased the incidence of aneurysm and ruptured aneurysm, together with the downregulation of ROS, 8-OHdG, NLRP3 and MMP9 in vivo and vitro. Furthermore, we demonstrated that blockade of cypD with CsA inhibited the above processes, thus preventing IA formation and rupture, these effects were highly dependent on ROS output. Mechanistically, we found that cypD directly interacts with ATP5B to promote ROS release in VSMCs, and 8-OHdG directly bind to NLRP3, which interacted with MMP9 to increased MMP9 level and activity in vivo and vitro. Our data expound an unexpected role of cypD in IA pathogenesis and an undescribed 8-OHdG/NLRP3/MMP9 pathway involved in accelerating VSMCs apoptosis and elastic fiber degradation. Repressing ROS output by CypD inhibition may be a promising therapeutic strategy for prevention IA development.


Assuntos
Aneurisma Intracraniano , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Metaloproteinase 9 da Matriz/genética , Espécies Reativas de Oxigênio/metabolismo
10.
Microvasc Res ; 149: 104554, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236346

RESUMO

Intracranial aneurysm (IA) is a severe cerebrovascular disease characterized by abnormal bulging of cerebral vessels that may rupture and cause a stroke. The expansion of the aneurysm accompanies by the remodeling of vascular matrix. It is well-known that vascular remodeling is a process of synthesis and degradation of extracellular matrix (ECM), which is highly dependent on the phenotype of vascular smooth muscle cells (VSMCs). The phenotypic switching of VSMC is considered to be bidirectional, including the physiological contractile phenotype and alternative synthetic phenotype in response to injury. There is increasing evidence indicating that VSMCs have the ability to switch to various phenotypes, including pro-inflammatory, macrophagic, osteogenic, foamy and mesenchymal phenotypes. Although the mechanisms of VSMC phenotype switching are still being explored, it is becoming clear that phenotype switching of VSMCs plays an essential role in IA formation, progression, and rupture. This review summarized the various phenotypes and functions of VSMCs associated with IA pathology. The possible influencing factors and potential molecular mechanisms of the VSMC phenotype switching were further discussed. Understanding how phenotype switching of VSMC contributed to the pathogenesis of unruptured IAs can bring new preventative and therapeutic strategies for IA.


Assuntos
Aneurisma Intracraniano , Músculo Liso Vascular , Humanos , Músculo Liso Vascular/metabolismo , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , Transdução de Sinais , Miócitos de Músculo Liso/patologia , Fenótipo , Células Cultivadas , Proliferação de Células
11.
Biomed Pharmacother ; 161: 114480, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37002575

RESUMO

Intracranial aneurysm (IA) is a frequent cerebrovascular disorder with unclear pathogenesis. The vascular smooth muscle cells (VSMCs) phenotypic switch is essential for IA formation. It has been reported that Ca2+ overload and excessive reactive oxygen species (ROS) are involved in VSMCs phenotypic switch. The transient receptor potential canonical 6 (TRPC6) and NADPH oxidase 4 (NOX4) are the main pathway to participate in Ca2+ overload and ROS production in VSMCs. Ca2+ overload can activate calcineurin (CN), leading to nuclear factor of activated T cell (NFAT) dephosphorylation to regulate the target gene's transcription. We hypothesized that activation of TRPC6-NFATC1 signaling may upregulate NOX4 and involve in VSMCs phenotypic switch contributing to the progression of IA. Our results showed that the expressions of NOX4, p22phox, p47phox, TRPC6, CN and NFATC1 were significantly increased, and VSMCs underwent a significant phenotypic switch in IA tissue and cellular specimens. The VIVIT (NFATC1 inhibitor) and BI-749327 (TRPC6 inhibitor) treatment reduced the expressions of NOX4, p22phox and p47phox and the production of ROS, and significantly improved VSMCs phenotypic switch in IA rats and cells. Consistent results were obtained from IA Trpc6 knockout (Trpc6-/-) mice. Furthermore, the results also revealed that NFATC1 could regulate NOX4 transcription by binding to its promoter. Our findings reveal that interrupting the TRPC6-NFATC1 signaling inhibits NOX4 and improves VSMCs phenotypic switch in IA, and regulating Ca2+ homeostasis may be an important therapeutic strategy for IA.


Assuntos
Aneurisma Intracraniano , Animais , Camundongos , Ratos , Aneurisma Intracraniano/metabolismo , Músculo Liso Vascular/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Fatores de Transcrição NFATC/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/metabolismo
12.
BMC Mol Cell Biol ; 24(1): 3, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717793

RESUMO

BACKGROUND: Alterations in vascular smooth muscle cells (VSMCs) contribute to the pathogenesis of intracranial aneurysms (IAs). However, molecular mechanisms underlying these changes remain unknown. The present study aimed to characterize the molecular mechanisms underlying VSMC-mediated IAs. METHODS: Expression of the circular RNA circ-ATL1 and microRNA miR-455 was detected in IAs by RT-qPCR. Interactions between circ-ATL1, miR-455 and SIRT5 were examined by luciferase reporter analysis and RT-qPCR. The regulatory roles of circ-ATL1, miR-455 and SIRT5 in VSMC migration, proliferation and phenotypic modulation were also examined by CCK8, Transwell® migration and western blot assays. RESULTS: Biochemical and bioinformatic techniques were used to demonstrate that circ-ATL1 and miR-455 participated in disparate biological processes relevant to aneurysm formation. Clinically, increased expression of circ-ATL1 and downregulated miR-455 expression were observed in IA patients compared with healthy subjects. Silencing of circ-ATL1 led to suppression of VSMC migration, proliferation and phenotypic modulation. Both SIRT5 and miR-455 were found to be downstream targets of circ-ATL1. SIRT5 upregulation or miR-455 inhibition reversed the inhibitory effects induced by circ-ATL1 silencing on VSMC proliferation, migration and phenotypic modulation. We found that VSMC phenotypic modulation by circ-ATL1 upregulation and miR-455 downregulation had a critical role in the development and formation of AIs. Specifically, circ-ATL1 downregulation reversed IA formation. CONCLUSION: Our data provide the theoretical basis for future studies on potential clinical treatment and prevention of IAs.


Assuntos
Fenômenos Biológicos , Aneurisma Intracraniano , MicroRNAs , RNA Circular , Sirtuínas , Humanos , Proliferação de Células/genética , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular , Sirtuínas/genética , Sirtuínas/metabolismo , RNA Circular/genética
13.
BMC Pharmacol Toxicol ; 23(1): 81, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36273189

RESUMO

Vascular smooth muscle cell (VSMC) phenotypic modulation regulates the initiation and progression of intracranial aneurysm (IA). Dexmedetomidine (DEX) is suggested to play neuroprotective roles in patients with craniocerebral injury. Therefore, we investigated the biological functions of DEX and its mechanisms against IA formation and progression in the current study. The rat primary VSMCs were isolated from Sprague-Dawley rats. IA and superficial temporal artery (STA) tissue samples were obtained from patients with IA. Flow cytometry was conducted to identify the characteristics of isolated VSMCs. Hydrogen peroxide (H2O2) was used to mimic IA-like conditions in vitro. Cell viability was detected using CCK-8 assays. Wound healing and Transwell assays were performed to detect cell motility. ROS production was determined by immunofluorescence using DCFH-DA probes. Western blotting and RT-qPCR were carried out to measure gene expression levels. Inflammation responses were determined by measuring inflammatory cytokines. Immunohistochemistry staining was conducted to measure α2-adrenergic receptor levels in tissue samples. DEX alleviated the H2O2-induced cytotoxicity, attenuated the promoting effects of H2O2 on cell malignancy, and protected VSMCs against H2O2-induced oxidative damage and inflammation response. DEX regulated the GSK-3ß/MKP-1/NRF2 pathway via the α2AR. DEX alleviates the inflammatory responses and oxidative damage of VSMCs by regulating the GSK-3ß/MKP-1/NRF2 pathway via the α2AR in IA.


Assuntos
Dexmedetomidina , Aneurisma Intracraniano , Ratos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Músculo Liso Vascular/metabolismo , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Peróxido de Hidrogênio , Aneurisma Intracraniano/tratamento farmacológico , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Ratos Sprague-Dawley , Sincalida/metabolismo , Sincalida/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Receptores Adrenérgicos alfa 2 , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo
14.
Acta Neuropathol Commun ; 10(1): 130, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064651

RESUMO

Saccular intracranial aneurysm (sIA) rupture leads to subarachnoid haemorrhage and is preceded by chronic inflammation and atherosclerotic changes of the sIA wall. Increased lymphangiogenesis has been detected in atherosclerotic extracranial arteries and in abdominal aortic aneurysms, but the presence of lymphatic vessels in sIAs has remained unexplored. Here we studied the presence of lymphatic vessels in 36 intraoperatively resected sIAs (16 unruptured and 20 ruptured), using immunohistochemical and immunofluorescence stainings for lymphatic endothelial cell (LEC) markers. Of these LEC-markers, both extracellular and intracellular LYVE-1-, podoplanin-, VEGFR-3-, and Prox1-positive stainings were detected in 83%, 94%, 100%, and 72% of the 36 sIA walls, respectively. Lymphatic vessels were identified as ring-shaped structures positive for one or more of the LEC markers. Of the sIAs, 78% contained lymphatic vessels positive for at least one LEC marker. The presence of LECs and lymphatic vessels were associated with the number of CD68+ and CD163+ cells in the sIA walls, and with the expression of inflammation indicators such as serum amyloid A, myeloperoxidase, and cyclo-oxygenase 2, with the presence of a thrombus, and with the sIA wall rupture. Large areas of VEGFR-3 and α-smooth muscle actin (αSMA) double-positive cells were detected in medial parts of the sIA walls. Also, a few podoplanin and αSMA double-positive cells were discovered. In addition, LYVE-1 and CD68 double-positive cells were detected in the sIA walls and in the thrombus revealing that certain CD68+ macrophages are capable of expressing LEC markers. This study demonstrates for the first time the presence of lymphatic vessels in human sIA walls. Further studies are needed to understand the role of lymphatic vessels in the pathogenesis of sIA.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Vasos Linfáticos , Trombose , Aneurisma Roto/complicações , Aneurisma Roto/metabolismo , Aneurisma Roto/patologia , Biomarcadores , Humanos , Inflamação/complicações , Aneurisma Intracraniano/metabolismo , Vasos Linfáticos/metabolismo , Trombose/complicações , Receptor 3 de Fatores de Crescimento do Endotélio Vascular
15.
Exp Brain Res ; 240(11): 2861-2870, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36104628

RESUMO

Intracranial aneurysm (IA) is a pathological dilation of the cerebral arteries. Vascular smooth muscle cell (VSMC) dysfunction assumes a role in IA development. In this context, this study probed the role of FOXO1 in human brain VSMC (HBVSMC) function via MCL1. FOXO1 and MCL1 expression in arterial wall tissues from IA patients and inflammatory cytokines (IL-1ß, TNF-α, and IL-6) levels in the serum of IA patients were, respectively, detected with qRT-PCR and ELISA. Pearson's correlation analysis was utilized to analyze the correlation between FOXO1 and MCL1. After FOXO1 and/or MCL1 were overexpressed in HBVSMCs, caspase-3 and Cyt-c protein expression were examined by western blot, cell proliferation by CCK-8 and EdU assays, and cell apoptosis by flow cytometry. IL-1ß, TNF-α, and IL-6 levels were assessed in the supernatant of HBVSMCs with ELISA. Dual-luciferase gene reporter and ChIP assays were conducted to evaluate the binding of FOXO1 to MCL1. FOXO1 expression was high and MCL expression was low in arterial wall tissues from IA patients, and IL-1ß, TNF-α, and IL-6 levels were high in the serum of IA patients. There was an inverse correlation between FOXO1 and MCL1 mRNA levels. Moreover, FOXO1 bound to the MCL1 promoter to decrease MCL1 transcription. In addition, FOXO1 overexpression augmented cell apoptosis, caspase-3 and Cyt-c protein expression, and IL-1ß, TNF-α, and IL-6 secretion, while reducing cell proliferation in HBVSMCs, which was abrogated by further MCL1 overexpression. FOXO1 impeded MCL1 transcription to curb HBVSMC proliferation and facilitate their apoptosis and inflammation.


Assuntos
Aneurisma Intracraniano , MicroRNAs , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , Caspase 3/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Sincalida/metabolismo , Apoptose/genética , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Luciferases/metabolismo , MicroRNAs/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo
16.
Acta Biochim Pol ; 69(3): 613-618, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36099587

RESUMO

OBJECTIVES: Cerebral aneurysm (CA) is one of the most common cerebrovascular diseases. The study was conducted to investigate the effect of resveratrol (RES) on the CA formation and its possible mechanisms. MATERIALS AND METHODS: Murine model of CA was constructed by induced hypertension and fed without (model group) or with RES (RES group). A Sham group was used as a control. The CA formation and inflammatory response were examined morphologically and histochemically. The expression of nuclear factor-κB (NF-κB), matrix metalloproteinase (MMP)-2, and MMP-9 was analyzed using qRT-PCR and Western blots. RESULTS: CA was induced in mice after the left common carotid artery was ligated and fed with high sodium chloride. Compared with the model, mice fed with RES had significantly fewer CA with smaller size, normal thickness of the arterial wall (P<0.05), and fewer infiltrated macrophages in the aneurysm wall (P<0.05). qRT-PCR and Western blot analyses showed that the expression of MMP-2, MMP-9 and NF-κB was significantly elevated in the model as compared with the control and significantly decreased after RES treatments (P<0.05). CONCLUSIONS: RES can inhibit the CA formation in mice subjected to induced hypertension and this inhibition is likely mediated via downregulating the NF-κB pathway.


Assuntos
Aneurisma Intracraniano , Resveratrol , Animais , Hipertensão/induzido quimicamente , Aneurisma Intracraniano/tratamento farmacológico , Aneurisma Intracraniano/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , NF-kappa B/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Cloreto de Sódio
17.
Inflamm Res ; 71(10-11): 1347-1364, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36057911

RESUMO

OBJECTIVES: This study aimed to identify the role of ferroptosis in intracranial aneurysm (IA). METHODS: GSE122897, GSE75436, GSE15629, and GSE75434 datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed ferroptosis-related genes (DEFRGs) were selected to construct a diagnostic model integrating with machine learning. Then, a consensus clustering algorithm was performed to classify IA patients into distinct ferroptosis-related clusters. Functional analyses, including GO, KEGG, GSVA, and GSEA analyses, were conducted to elucidate the underlying mechanisms. ssGSEA and xCell algorithms were performed to uncover the immune characteristics. RESULTS: We identified 28 DEFRGs between IAs and controls from the GSE122897 dataset. GO and KEGG results showed that these genes were enriched in cytokine activity, ferroptosis, and the IL-17 signaling pathway. Immune analysis showed that the IAs had higher levels of immune infiltration. A four FRGs model (MT3, CDKN1A, ZEP69B, and ABCC1) was established and validated with great IA diagnostic ability. We divided the IA samples into two clusters and found that cluster 2 had a higher proportion of rupture and immune infiltration. We identified 10 ferroptosis phenotypes-related markers in IAs. CONCLUSION: Ferroptosis and the immune microenvironment are closely associated with IAs, providing a basis for understanding the IA development.


Assuntos
Ferroptose , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Ferroptose/genética , Perfilação da Expressão Gênica , Biomarcadores/metabolismo , Transdução de Sinais
18.
Sci Rep ; 12(1): 13282, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918429

RESUMO

To better understand the molecular mechanisms of intracranial aneurysm (IA) pathogenesis, we used gene coexpression networks to identify hub genes and functional pathways associated with IA onset. Two Gene Expression Omnibus (GEO) datasets encompassing intracranial aneurysm tissue samples and cerebral artery control samples were included. To discover functional pathways and potential biomarkers, weighted gene coexpression network analysis was employed. Next, single-gene gene set enrichment analysis was employed to investigate the putative biological roles of the chosen genes. We also used receiver operating characteristic analysis to confirm the diagnostic results. Finally, we used a rat model to confirm the hub genes in the module of interest. The module of interest, which was designated the green module and included 115 hub genes, was the key module that was most strongly and negatively associated with IA formation. According to gene set variation analysis results, 15 immune-related pathways were significantly activated in the IA group, whereas 7 metabolic pathways were suppressed. In two GEO datasets, SLC2A12 could distinguish IAs from control samples. Twenty-nine hub genes in the green module might be biomarkers for the occurrence of cerebral aneurysms. SLC2A12 expression was significantly downregulated in both human and rat IA tissue. In the present study, we identified 115 hub genes related to the pathogenesis of IA onset and deduced their potential roles in various molecular pathways; this new information may contribute to the diagnosis and treatment of IAs. By external validation, the SLC2A12 gene may play an important role. The molecular function of SLC2A12 in the process of IA occurrence can be further studied in a rat model.


Assuntos
Aneurisma Intracraniano , Animais , Biomarcadores/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Aneurisma Intracraniano/metabolismo , Ratos
19.
Mol Neurobiol ; 59(10): 5925-5934, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35831556

RESUMO

Both angiogenesis and inflammation contribute to activation of matrix metalloproeteinase-9 (MMP-9), which dissolves the extracellular matrix, disrupts the blood-brain barrier, and plays an important role in the pathogenesis of brain arteriovenous malformations (BAVMs). The key common cytokine in both angiogenesis and inflammation is interleukin 6 (IL-6). Previous studies have shown elevated systemic MMP-9 and decreased systemic vascular endothelial growth factor (VEGF) in BAVM patients. However, the clinical utility of plasma cytokines is unclear. The purpose of this study is to explore the relationship between plasma cytokines and the clinical presentations of BAVMs. Prospectively, we recruited naive BAVM patients without hemorrhage as the experimental group and unruptured intracranial aneurysm (UIA) patients as the control group. All patients received digital subtraction angiography, and plasma cytokines were collected from the lesional common carotid artery. Plasma cytokine levels were determined using a commercially available, monoclonal antibody-based enzyme-linked immunosorbent assay. Subgroup analysis based on hemorrhagic presentation and angiograchitecture was done for the BAVM group. Pearson correlations were calculated for the covariates. Means and differences for continuous and categorical variables were compared using Student's t and χ2 tests respectively. Plasma MMP-9 levels were significantly higher in the BAVM group (42,945 ± 29,991 pg/mL) than in the UIA group (28,270 ± 17,119 pg/mL) (p < 0.001). Plasma MMP-9 levels in epileptic BAVMs (57,065 ± 35,732; n = 9) were higher than in non-epileptic BAVMs (35,032 ± 28,301; n = 19) (p = 0.049). Lower plasma MMP-9 levels were found in cases of BAVM with angiogenesis and with peudophlebitis. Plasma MMP-9 is a good biomarker reflecting ongoing vascular remodeling in BAVMs. Angiogenesis and pseudophlebitis are two angioarchitectural signs that reflect MMP-9 activities and can potentially serve as imaging biomarkers for epileptic BAVMs.


Assuntos
Aneurisma Intracraniano , Malformações Arteriovenosas Intracranianas , Metaloproteinase 9 da Matriz , Convulsões , Encéfalo/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/patologia , Aneurisma Intracraniano/metabolismo , Malformações Arteriovenosas Intracranianas/metabolismo , Malformações Arteriovenosas Intracranianas/patologia , Metaloproteinase 9 da Matriz/sangue , Neovascularização Patológica/metabolismo , Convulsões/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
EMBO Mol Med ; 14(2): e14713, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34978375

RESUMO

The prevalence of intracranial aneurysm (IA) is increasing, and the consequences of its rupture are severe. This study aimed to reveal specific, sensitive, and non-invasive biomarkers for diagnosis and classification of ruptured and unruptured IA, to benefit the development of novel treatment strategies and therapeutics altering the course of the disease. We first assembled an extensive candidate biomarker bank of IA, comprising up to 717 proteins, based on altered proteins discovered in the current tissue and serum proteomic analysis, as well as from previous studies. Mass spectrometry assays for hundreds of biomarkers were efficiently designed using our proposed deep learning-based method, termed DeepPRM. A total of 113 potential markers were further quantitated in serum cohort I (n = 212) & II (n = 32). Combined with a machine-learning-based pipeline, we built two sets of biomarker combinations (P6 & P8) to accurately distinguish IA from healthy controls (accuracy: 87.50%) or classify IA rupture patients (accuracy: 91.67%) upon evaluation in the external validation set (n = 32). This extensive circulating biomarker development study provides valuable knowledge about IA biomarkers.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Aneurisma Roto/diagnóstico , Aneurisma Roto/metabolismo , Biomarcadores , Humanos , Aneurisma Intracraniano/diagnóstico , Aneurisma Intracraniano/metabolismo , Proteômica , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...